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Abstract

We consider a circular cylinder of linearly elastic material with cylindrically monoclinic material symmetry. This

represents a model for a helically wound composite cable or wire rope. The elastic moduli are allowed to be arbitrary

functions of the radius r. The cylinder undergoes deformation in which the axis of the cylinder is bent into a plane

quartic curve. For the resulting stress field, we obtain exact integrals of the equilibrium equations, and derive simplified

expressions for the shear stress resultants and bending moments.
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1. Introduction

In a previous paper Crossley et al. (2003) have given exact analytical solutions for bending and flexure of

elastic circular cylinders with cylindrical monoclinic symmetry. This theory was designed to model the
behaviour of helically wound cables and wire ropes. Deformations that corresponded to simple bending,

flexure under end loading, and bending under a uniform load, or self-weight, were analyzed. Among other

results, it was shown that because of the handedness of the helical winding, it is necessary to apply bending

moments about the x-axis as well as about the y-axis to produce flexure in the ðx; zÞ plane. Further details,
including extensive graphical results, and background information have been given by Crossley (2002).

There is an extensive and well-known literature on bending and flexure of isotropic elastic cylinders, that

is described in the standard texts, such as Love (1944) or Timoshenko and Goodier (1951). This analysis

extends in a very straightforward way to cylindrically orthotropic elastic cylinders provided that the or-
thotropic axes coincide with the r, h, and z directions of cylindrical polar coordinates ðr; h; zÞ. This analysis
is basic for the formulation of the one-dimensional Saint-Venant theory of bending and flexure of cylinders.

Equations governing elastic behaviour of materials with general cylindrical isotropy were formulated by
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Lekhnitskii (1963) but no explicit solutions were given. Lekhnitskii (1963) also specialised to the case of

monoclinic symmetry with the normal cross-sections of the cylinder as planes of elastic reflectional sym-

metry. However the appropriate continuum model for helically wound cables and ropes requires mono-

clinic symmetry with the concentric circular cylindrical surfaces r ¼ constant as the surfaces of reflectional
symmetry. The relevant governing equations are easily derived (for example Spencer, 1984) but few explicit

solutions have been recorded. One such solution by Blouin and Cardou (1989) concerns the problem of

extension and torsion of a circular cylinder. There are numerous engineering studies that employ discrete or

semi-continuous models of cables and ropes. General references to this work are the book by Costello

(1997) and a review by Cardou and Jolicoeur (1997). This paper is concerned only with the continuum

theory of linear elasticity.

Thirteen elastic stiffness coefficients cij are required to characterize the monoclinic symmetry of a linear

elastic material. In the model used in Crossley et al. (2003) it was assumed that the cylinder was locally
transversely isotropic, with the preferred direction of transverse isotropy coincident with the direction of

the helical winding. In this case the 13 coefficients can be expressed in terms of the lay angle d and five

elastic moduli that characterize transverse isotropy. In order to derive analytical solutions, it was assumed

by Crossley et al. (2003) that the transversely isotropic moduli and the lay angle were constants throughout

the cylinder (or piecewise constant functions of the radial coordinate r in the case of a layered cylinder), and

so consequently that the stiffnesses cij were constant or piecewise constant.

In general the lay angle d is not constant (for example, for a winding of constant pitch p we have

p tan d ¼ 2pr) although it may often be adequately approximated as a piecewise constant function of r. If
the cij are functions of r then, for the considered deformations, the governing equations may be reduced to

a system of ordinary differential equations, that in general have to be solved numerically. The purpose of

this paper is to derive some general results and integrals of the equations that do not require the cij to be

constant or piecewise constant.

The basic elasticity theory is outlined in Section 2. The bending and flexural deformations are described

in Section 3 and some integrals of the equilibrium equations are obtained in Section 4. Simplified ex-

pressions for the stress resultants and moments are derived in Section 5. Sections 6–8 describe the special

cases in which the axis of the cylinder is bent in the ðx; zÞ plane into quadratic, cubic and quartic curves
respectively.
2. General theory

We consider a circular cylindrical tube of radius a of linearly elastic material. At first all vector and

tensor quantities are referred to a system of cylindrical polar coordinates r, h, z. In this system the com-

ponents of the displacement u are denoted ur, uh, uz. The components of the stress tensor and the infini-
tesimal strain tensor are arranged as the column vectors
r ¼ rrr; rhh; rzz; rhz; rrz; rrh½ �T;
e ¼ err; ehh; ezz; 2ehz; 2erz; 2erh½ �T;

ð2:1Þ
respectively, where
err ¼
our
or

; ehh ¼
ur
r
þ 1

r
ouh
oh

; ezz ¼
ouz
oz

;

2ehz ¼
ouh
oz

þ 1

r
ouz
oh

; 2erz ¼
our
oz

þ ouz
or

; 2erh ¼
1

r
our
oh

þ ouh
or

� uh
r
:

ð2:2Þ
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The only required material symmetry is reflectional symmetry with respect to the circular cylindrical sur-

faces r¼ constant, so the material may be described as cylindrically monoclinic. The corresponding stress–

strain relation can be expressed as
r ¼ Ce; where C ¼

c11 c12 c13 c14 0 0
c12 c22 c23 c24 0 0

c13 c23 c33 c34 0 0

c14 c24 c34 c44 0 0

0 0 0 0 c55 c56
0 0 0 0 c56 c66

2
6666664

3
7777775
: ð2:3Þ
An important special case arises when the material is locally transversely isotropic, with the axis of

transverse isotropy defined by a unit vector a ¼ sin dðrÞih þ cos dðrÞiz (where ir; ih and iz are unit vectors in

the radial, circumferential and axial directions respectively) so that the trajectories of a are helices lying in

the cylindrical surfaces with tangents inclined at the lay angle dðrÞ to the z direction. In this case the elastic

stiffnesses cij (i; j ¼ 1; 2; . . . ; 6) may be expressed in terms of the angle d and five elastic constants. This

configuration provides a model for the description of helically wound cables and wires. Further details and

references are given in Crossley et al. (2003). For the present analysis there is no extra difficulty in

considering the general case in which no restrictions are placed on the cij (other than those required by
positive-definiteness of the strain energy) and so we shall regard the cij as general functions of the coor-

dinate r.
In cylindrical polar coordinates the equations of equilibrium are
orrr

or
þ 1

r
orrh

oh
þ orrz

oz
þ rrr � rhh

r
þ F � ir ¼ 0;

orrh

or
þ 1

r
orhh

oh
þ orhz

oz
þ 2rrh

r
þ F � ih ¼ 0;

orrz

or
þ 1

r
orhz

oh
þ orzz

oz
þ rrz

r
þ F � iz ¼ 0;

ð2:4Þ
where F is the body force per unit volume.
3. Bending and flexural deformations

In addition to the cylindrical polar coordinates ðr; h; zÞ, we employ rectangular Cartesian coordinates

ðx; y; zÞ such that x ¼ r cos h, y ¼ r sin h, and denote components of u in the x and y directions by ux, uy
respectively. We seek solutions in which the axis r ¼ 0 of the cylinder is bent in the ðx; zÞ plane into a

parabolic, cubic or quartic curve of the form
ux ¼ 1
2
Cz2 þ 1

6
Dz3 þ 1

24
Ez4; ð3:1Þ
where C, D and E are constants. Following the procedure described in Crossley et al. (2003), we consider

displacement fields of the form
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ur ¼ ff1ðrÞ þ zf3ðrÞ þ 1
2
z2f5ðrÞ þ 1

2
Cz2 þ 1

6
Dz3 þ 1

24
Ez4g cos h

þ ff2ðrÞ þ zf4ðrÞg sin h;
uh ¼ fg1ðrÞ þ zg3ðrÞ þ 1

2
z2g5ðrÞ � 1

2
Cz2 � 1

6
Dz3 � 1

24
Ez4g sin h

þ fg2ðrÞ þ zg4ðrÞg cos h;
uz ¼ fh1ðrÞ þ zh3ðrÞ þ 1

2
z2h5ðrÞg sin h

þ fh2ðrÞ þ zh4ðrÞ � Crz� 1
2
Drz2 � 1

6
Erz3g cos h:

ð3:2Þ
Hence, from (2.2), the strain tensor e has the form
e ¼ ðe10 þ ze11 þ 1
2
z2e12Þ cos hþ ðe20 þ ze21 þ 1

2
z2e22Þ sin h; ð3:3Þ
where
eab ¼ eðabÞrr ; eðabÞhh ; eðabÞzz ; 2eðabÞhz ; 2eðabÞrz ; 2eðabÞrh

h iT
; a ¼ 1; 2; b ¼ 0; 1; 2 ð3:4Þ
and
e10 ¼ ½f 0
1; ðf1 þ g1Þ=r; h4 � Cr; g4 þ h1=r; f3 þ h02; ðf2 � g2Þ=r þ g02�

T
;

e20 ¼ ½f 0
2; ðf2 � g2Þ=r; h3; g3 � h2=r; f4 þ h01; �ðf1 þ g1Þ=r þ g01�

T
;

e11 ¼ ½f 0
3; ðf3 þ g3Þ=r; �Dr; h3=r; f5 þ h04; ðf4 � g4Þ=r þ g04�

T
;

e21 ¼ ½f 0
4; ðf4 � g4Þ=r; h5; g5 � h4=r; h03; �ðf3 þ g3Þ=r þ g03�

T
;

e12 ¼ ½f 0
5; ðf5 þ g5Þ=r; �Er; h5=r; 0; 0�T;

e22 ¼ ½0; 0; 0; 0; h05; �ðf5 þ g5Þ=r þ g05�
T
;

ð3:5Þ
where primes denote derivatives with respect to r.
Correspondingly, from (2.3), r has the form
r ¼ ðt1 þ zs1 þ 1
2
z2p1Þ cos hþ ðt2 þ zs2 þ 1

2
z2p2Þ sin h; ð3:6Þ
where for a ¼ 1; 2
ta ¼ tðaÞrr ; tðaÞhh ; tðaÞzz ; tðaÞhz ; tðaÞrz ; tðaÞrh

h iT
;

sa ¼ sðaÞrr ; sðaÞhh ; sðaÞzz ; sðaÞhz ; sðaÞrz ; sðaÞrh

h iT
;

pa ¼ pðaÞrr ; pðaÞhh ; pðaÞzz ; pðaÞhz ; pðaÞrz ; pðaÞrh

h iT
:

ð3:7Þ
Hence, from (2.3), the stress–strain relation can be expressed as
t1 t2 s1 s2 p1 p2½ � ¼ C e10 e20 e11 e21 e12 e22½ � ð3:8Þ

and we note that, in particular
pð1Þrz ¼ 0; pð1Þrh ¼ 0; pð2Þrr ¼ 0; pð2Þhh ¼ 0; pð2Þzz ¼ 0; pð2Þhz ¼ 0: ð3:9Þ
4. Integrals of the equilibrium equations

If we now use (3.5), (3.6) and (3.8) to express the cylindrical polar components of r in terms of
f1; . . . ; f5; g1; . . . ; g5; h1; . . . ; h5, substitute the resulting expressions into the equilibrium equations (2.4), and

in each of the equilibrium equations equate the coefficients of zp cos h and zp sin h (p ¼ 0; 1; 2) to zero, we
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obtain a system of 15 ordinary differential equations for f1; . . . ; f5; g1; . . . ; g5; h1; . . . ; h5. This system was

formulated by Crossley et al. (2003) for the case in which the elastic stiffnesses cij are constants, and it was

shown there that the system then admits analytical solutions which were developed in detail. The analysis

was also extended by Crossley et al. (2003) to the case of a layered cylinder in which the cij are piecewise
constant functions of r.

In this section we derive some integrals of the equilibrium equations that do not require the cij to be

constant, but are valid for any (including discontinuous) dependence of the cij on the radial coordinate r.
By substituting (3.6) and (3.7) into the equilibrium equations (2.4), and equating to zero the coefficients of

z0 cos h and z0 sin h, there follows
dtð1Þrr

dr
þ tð2Þrh

r
þ sð1Þrz þ tð1Þrr � tð1Þhh

r
¼ �W0; ð4:1Þ

dtð2Þrr

dr
� tð1Þrh

r
þ sð2Þrz þ tð2Þrr � tð2Þhh

r
¼ 0; ð4:2Þ

dtð1Þrh

dr
þ tð2Þhh

r
þ sð1Þhz þ 2tð1Þrh

r
¼ 0; ð4:3Þ

dtð2Þrh

dr
� tð1Þhh

r
þ sð2Þhz þ 2tð2Þrh

r
¼ W0; ð4:4Þ

dtð1Þrz

dr
þ tð2Þhz

r
þ sð1Þzz þ tð1Þrz

r
¼ 0; ð4:5Þ

dtð2Þrz

dr
� tð1Þhz

r
þ sð2Þzz þ tð2Þrz

r
¼ 0: ð4:6Þ
Here, as in Crossley et al. (2003), the body force F has been chosen to act in the x direction, so that

F ¼ W0ðir cos h� ih sin hÞ.
Similarly, by equating to zero the coefficients of z cos h and z sin h in (2.4), there follows
dsð1Þrr

dr
þ sð2Þrh

r
þ sð1Þrr � sð1Þhh

r
¼ 0; ð4:7Þ

dsð2Þrr

dr
� sð1Þrh

r
þ pð2Þrz þ sð2Þrr � sð2Þhh

r
¼ 0; ð4:8Þ

dsð1Þrh

dr
þ sð2Þhh

r
þ pð1Þhz þ 2sð1Þrh

r
¼ 0; ð4:9Þ

dsð2Þrh

dr
� sð1Þhh

r
þ 2sð2Þrh

r
¼ 0; ð4:10Þ

dsð1Þrz

dr
þ sð2Þhz

r
þ pð1Þzz þ sð1Þrz

r
¼ 0; ð4:11Þ

dsð2Þrz

dr
� sð1Þhz

r
þ sð2Þrz

r
¼ 0; ð4:12Þ
where account has been taken of (3.9).
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Further, by equating to zero the coefficients of z2 cos h and z2 sin h in (2.4), and taking account of (3.9),

we obtain
dpð1Þrr

dr
þ pð2Þrh

r
þ pð1Þrr � pð1Þhh

r
¼ 0; ð4:13Þ

dpð2Þrh

dr
� pð1Þhh

r
þ 2pð2Þrh

r
¼ 0; ð4:14Þ

dpð2Þrz

dr
� pð1Þhz

r
þ pð2Þrz

r
¼ 0: ð4:15Þ
By eliminating pð1Þhh from (4.13) and (4.14) there follows
dpð1Þrr

dr
þ pð1Þrr

r
� dpð2Þrh

dr
� pð2Þrh

r
¼ 0
and hence
d

dr
frðpð1Þrr � pð2Þrh Þg ¼ 0
and therefore
pð1Þrr � pð2Þrh ¼ G1

r
; ð4:16Þ
where G1 is constant. Also, from (4.15)
pð1Þhz ¼ d

dr
ðrpð2Þrz Þ: ð4:17Þ
Next, from (4.7) and (4.10), by eliminating sð1Þhh
dsð1Þrr

dr
þ sð1Þrr

r
� dsð2Þrh

dr
� sð2Þrh

r
¼ 0
from which there follows
sð1Þrr � sð2Þrh ¼ B1

r
; ð4:18Þ
where B1 is constant. Also, from (4.12)
sð1Þhz ¼ d

dr
ðrsð2Þrz Þ: ð4:19Þ
Similarly, from (4.8) and (4.9)
dsð2Þrr

dr
þ sð1Þrh

r
þ pð2Þrz þ sð2Þrr

r
þ dsð1Þrh

dr
þ pð1Þhz ¼ 0 ð4:20Þ
and it follows from (4.17) and (4.20) that
sð2Þrr þ sð1Þrh þ rpð2Þrz ¼ B2

r
; ð4:21Þ
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where B2 is another constant. Also, from (4.11)
sð2Þhz þ rpð1Þzz ¼ � d

dr
ðrsð1Þrz Þ: ð4:22Þ
By similar arguments, we may obtain from (4.1)–(4.6) the results
tð1Þrr � tð2Þrh þ rsð1Þrz ¼ A1

r
� W0r �

1

r

Z r

0

r2pð1Þzz dr; ð4:23Þ
tð2Þrr þ tð1Þrh þ rsð2Þrz ¼ A2

r
; ð4:24Þ
tð1Þhz � rsð2Þzz ¼ d

dr
ðrtð2Þrz Þ; ð4:25Þ
tð2Þhz þ rsð1Þzz ¼ � d

dr
ðrtð1Þrz Þ: ð4:26Þ
If the surface r ¼ a of the cylinder is free from traction, so that at r ¼ a
rrr ¼ 0; rrh ¼ 0; rrz ¼ 0; ð4:27Þ
then it follows that the constants A2, B1, B2, and G1 are all zero, and A1 ¼ W0a2 þ
R a
0
r2pð1Þzz dr. Then (4.16),

(4.18), (4.21), (4.23) and (4.24) reduce to
tð1Þrr � tð2Þrh þ rsð1Þrz ¼ W0ða2 � r2Þ
r

þ 1

r

Z a

r
r2pð1Þzz dr;

tð2Þrr þ tð1Þrh þ rsð2Þrz ¼ 0;

sð1Þrr � sð2Þrh ¼ 0; sð2Þrr þ sð1Þrh þ rpð2Þrz ¼ 0; pð1Þrr � pð2Þrh ¼ 0:

ð4:28Þ
The case of bending and flexure in the ðy; zÞ plane is dealt with by replacing h by hþ 1
2
p. In general the

deformations in the ðx; zÞ and ðy; zÞ planes are coupled through the boundary conditions, and it is necessary

to combine the two sets of solutions. Some examples were described in Crossley et al. (2003).
5. Stress resultants and moments

The components of the force on a normal cross-section z¼ constant of the cylinder are denoted by

ðX ; Y ; ZÞ and the moments of these forces about the ðx; y; zÞ axes by ðMx;My ;MzÞ. Thus
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X ¼
Z a

0

Z 2p

0

ðrrz cos h� rhz sin hÞrdrdh;

Y ¼
Z a

0

Z 2p

0

ðrrz sin hþ rhz cos hÞrdrdh;

Z ¼
Z a

0

Z 2p

0

rzzrdrdh;

Mx ¼
Z a

0

Z 2p

0

rzz sin h r2 drdh;

My ¼ �
Z a

0

Z 2p

0

rzz cos h r2 drdh;

Mz ¼
Z a

0

Z 2p

0

rhzr2 drdh:

ð5:1Þ
It follows from (3.6) that
X ¼ p
Z a

0

ðtð1Þrz

�
� tð2Þhz Þ þ zðsð1Þrz � sð2Þhz Þ þ

1

2
z2ðpð1Þrz � pð2Þhz Þ

�
rdr;

Y ¼ p
Z a

0

ðtð2Þrz

�
þ tð1Þhz Þ þ zðsð2Þrz þ sð1Þhz Þ þ

1

2
z2ðpð2Þrz þ pð1Þhz Þ

�
rdr;

Z ¼ 0;

Mx ¼ p
Z a

0

tð2Þzz

�
þ zsð2Þzz þ 1

2
z2pð2Þzz

�
r2 dr;

My ¼ �p
Z a

0

tð1Þzz

�
þ zsð1Þzz þ 1

2
z2pð1Þzz

�
r2 dr;

Mz ¼ 0:

ð5:2Þ
The zero values of Z and Mz reflect the fact that the bending and flexural deformations considered here

uncouple from extensional and torsional deformations of the cylindrically monoclinic cylinder.

From (3.9), the expressions for X and Mx simplify to
X ¼ p
Z a

0

fðtð1Þrz � tð2Þhz Þ þ zðsð1Þrz � sð2Þhz Þgrdr;

Mx ¼ p
Z a

0

ftð2Þzz þ zsð2Þzz gr2 dr:
ð5:3Þ
From (4.22), (4.26) and (5.31)
X ¼ p
Z a

0

ðtð1Þrz

��
þ d

dr
ðrtð1Þrz Þ þ rsð1Þzz

�
þ z ðsð1Þrz

�
þ d

dr
ðrsð1Þrz Þ þ rpð1Þzz

��
rdr

¼ p½r2tð1Þrz þ zr2sð1Þrz �
a
0 þ p

Z a

0

sð1Þzz r
2 dr þ pz

Z a

0

pð1Þzz r
2 dr:

ð5:4Þ
Hence, if the surface r ¼ a is traction-free
X ¼ p
Z a

0

sð1Þzz r
2 dr þ pz

Z a

0

pð1Þzz r
2 dr: ð5:5Þ
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However, it follows from (4.28) that
Z a

0

pð1Þzz r
2 dr ¼ �W0a2 ð5:6Þ
(assuming that tð1Þrr � tð2Þrh þ rsð1Þrz is bounded on the axis r ¼ 0), and so in this case (5.5) becomes
X ¼ p
Z a

0

sð1Þzz r
2 dr � pzW0a2: ð5:7Þ
Similarly, from (4.17), (4.19), (4.25) and (5.2)
Y ¼ p
Z a

0

tð2Þrz

��
þ d

dr
ðrtð2Þrz Þ þ rsð2Þzz

�
þ z sð2Þrz

�
þ d

dr
ðrsð2Þrz Þ

�
þ 1

2
z2 pð2Þrz

�
þ d

dr
ðrpð2Þrz Þ

��
rdr

¼ p r2tð2Þrz

�
þ zr2sð2Þrz þ 1

2
z2r2pð2Þrz

�a
0

þ p
Z a

0

sð2Þzz r
2 dr

ð5:8Þ
and therefore, when the surface of the cylinder is traction-free
Y ¼ p
Z a

0

sð2Þzz r
2 dr: ð5:9Þ
It is of interest to note that the resultants and moments (and hence, as described in Crossley et al. (2003),

the bending stiffnesses of the cylinder) can be determined with a knowledge only of the stress component

rzz. We observe also that the stress resultants and moments satisfy the beam equilibrium equations
dMx

dz
� Y ¼ 0;

dMy

dz
þ X ¼ 0; ð5:10Þ

dX
dz

þ pa2W0 ¼ 0;
dY
dz

¼ 0: ð5:11Þ
The first of (5.11) confirms that (5.6) holds and hence that the quantity tð1Þrr � tð2Þrh þ rsð1Þrz is bounded on the

axis r ¼ 0. A proof of this result that is independent of the beam equilibrium equations is given in Section 8.
6. Pure bending

The deformation
ur ¼ ff1ðrÞ þ 1
2
Cz2g cos h; uh ¼ fg1ðrÞ � 1

2
Cz2g sin h; uz ¼ h1ðrÞ sin h� Crz cos h ð6:1Þ
represents the special case of (3.2) in which the axis of the cylinder is deformed into an arc in the ðx; zÞ plane
with constant curvature C. It follows that in this case
e10 ¼ f 0
1; ðf1

�
þ g1Þ=r; � Cr; h1=r; 0; 0

�T
;

e20 ¼ 0; 0; 0; 0; h01;
�

� ðf1 þ g1Þ=r þ g01
�T
;

e11 ¼ 0; e21 ¼ 0; e12 ¼ 0; e22 ¼ 0

ð6:2Þ
and so
t1 ¼ tð1Þrr ; tð1Þhh ; tð1Þzz ; tð1Þhz ; 0; 0
h iT

; t2 ¼ 0; 0; 0; 0; tð2Þrz ; tð2Þrh

h iT
;

s1 ¼ 0; s2 ¼ 0; p1 ¼ 0; p2 ¼ 0
ð6:3Þ
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and the stress field has the form r ¼ t1 cos hþ t2 sin h. The non-trivial equilibrium equations are (4.1), (4.4)

and (4.6) which, with zero body force, reduce to
dtð1Þrr

dr
þ tð2Þrh

r
þ tð1Þrr � tð1Þhh

r
¼ 0;

dtð2Þrh

dr
� tð1Þhh

r
þ 2tð2Þrh

r
¼ 0;

dtð2Þrz

dr
� tð1Þhz

r
þ tð2Þrz

r
¼ 0: ð6:4Þ
These determine f1, g1 and h1 in terms of C. If the surface of the cylinder is traction-free, so that the

boundary conditions are homogeneous, then the solution of (6.4) has the form
ðf1ðrÞ; g1ðrÞ; h1ðrÞÞ ¼ Cð�ff ðrÞ; �ggðrÞ; �hhðrÞÞ; ð6:5Þ

where �ff ðrÞ, �ggðrÞ, �hhðrÞ are the solutions of (6.4) with C ¼ 1: The stress vectors t1 and t2 are then given by

(3.8) and (6.2). Also when the surface is traction-free
tð2Þrh ¼ tð1Þrr ; rtð2Þrz ¼ �
Z a

r
tð1Þhz dr ð6:6Þ
and it follows from (6.6) that if tð2Þrh ¼ 0 on any surface (for example at a frictionless interface between layers

in a composite cylinder) then also tð1Þrr ¼ 0 on that surface.

This deformation in which the cylinder axis deforms to an arc in the ðx; zÞ plane is maintained by the

constant bending moment
My ¼ �p
Z a

0

tð1Þzz r
2 dr ¼ �pC

Z a

0

fc13�ff 0 þ c23ð�ff þ �ggÞ=r � rc33 þ c34�hh=rgr2 dr ð6:7Þ
and the bending rigidity bs is given by My ¼ Cbs; so that
bs ¼ �p
Z a

0

fc13�ff 0 þ c23ð�ff þ �ggÞ=r � rc33 þ c34�hh=rgr2 dr: ð6:8Þ
The other bending moment Mx and the shear forces are zero.
7. Flexure with a uniform shear force

In the deformation
ur ¼ zf3ðrÞ
�

þ 1

6
Dz3

�
cos hþ f2ðrÞ sin h;

uh ¼ zg3ðrÞ
�

� 1

6
Dz3

�
sin hþ g2ðrÞ cos h;

uz ¼ zh3ðrÞ sin hþ h2ðrÞ
�

� 1

2
Drz2

�
cos h;

ð7:1Þ
the axis r ¼ 0 of the cylinder is deformed into a plane cubic curve. In this case
e10 ¼ ½0; 0; 0; 0; f3 þ h02; ðf2 � g2Þ=r þ g02�
T
;

e20 ¼ ½f 0
2; ðf2 � g2Þ=r; h3; g3 � h2=r; 0; 0�T;

e11 ¼ ½f 0
3; ðf3 þ g3Þ=r; �Dr; h3=r; 0; 0�T;

e21 ¼ ½0; 0; 0; 0; h03; �ðf3 þ g3Þ=r þ g03�
T
;

e12 ¼ 0; e22 ¼ 0

ð7:2Þ
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and therefore
t1 ¼ 0; 0; 0; 0; tð1Þrz ; tð1Þrh

h iT
; t2 ¼ tð2Þrr ; tð2Þhh ; tð2Þzz ; tð2Þhz ; 0; 0

h iT
;

s1 ¼ sð1Þrr ; sð1Þhh ; sð1Þzz ; sð1Þhz ; 0; 0
h iT

; s2 ¼ 0; 0; 0; 0; sð2Þrz ; sð2Þrh

h iT
;

p1 ¼ 0; p2 ¼ 0

ð7:3Þ
and so the stress field has the form r ¼ ðt1 þ zs1Þ cos hþ ðt2 þ zs2Þ sin h. The non-trivial equilibrium

equations are (4.2), (4.3), (4.5), (4.7), (4.10) and (4.12), which determine f2; g2; h2; f3; g3 and h3 in terms of D.
Inspection shows that (4.7), (4.10) and (4.12) are identical to (6.4), except that ðf1; g1; h1;CÞ are replaced by

ðf3; g3; h3:DÞ: Hence if the cylinder surface is free of traction, (4.7), (4.10) and (4.12) have the solution
ðf3ðrÞ; g3ðrÞ; h3ðrÞÞ ¼ Dð�ff ðrÞ; �ggðrÞ; �hhðrÞÞ; ð7:4Þ

and the stress vectors s1and s2 are then given by (3.8) and (7.2) and are identical to the stress vectors t1 and

t2 in the bending problem when C is replaced by D. Equations (4.2), (4.3) and (4.5) then take the forms
dtð2Þrr

dr
� tð1Þrh

r
þ tð2Þrr � tð2Þhh

r
¼ �sð2Þrz ;

dtð1Þrh

dr
þ tð2Þhh

r
þ 2tð1Þrh

r
¼ �sð1Þhz ;

dtð1Þrz

dr
þ tð2Þhz

r
þ tð1Þrz

r
¼ �sð1Þzz

ð7:5Þ
which, since the right-hand sides are now known, and when the surface is traction-free, determine the

solution for f2, g2 and h2 to be of the form
ðf2ðrÞ; g2ðrÞ; h2ðrÞÞ ¼ Dðf̂f ðrÞ; ĝgðrÞ; ĥhðrÞÞ; ð7:6Þ

where ðf̂f ðrÞ; ĝgðrÞ; ĥhðrÞÞ is the solution of (7.5) with D ¼ 1. When ðf2; g2; h2Þ are determined, the stress

vectors t1 and t2 are given by (3.8) and (7.2).

If the cylinder surface is traction-free then tð2Þrr þ tð1Þrh þ rsð2Þrz ¼ 0 and sð1Þrr � sð2Þrh ¼ 0. As in the case of pure

bending, if rrh ¼ 0 and rrz ¼ 0 on any cylindrical surface r ¼ constant, then also rrr ¼ 0 on that surface.

Thus in a composite layered cylinder with smooth frictionless contact between the layers, there is zero

normal pressure at the interfaces between the layers. This was observed in numerical calculations by

Jolicoeur and Cardou (1994) for the pure bending problem and has also been confirmed numerically by

Crossley (2002) for bending and flexure.
The shear stress resultants and bending moments are
X ¼ p
Z a

0

sð1Þzz r
2 dr ¼ pD

Z a

0

fc13�ff 0 þ c23ð�ff þ �ggÞ=r � rc33 þ c34�hh=rgr2 dr; Y ¼ 0;

Mx ¼ p
Z a

0

tð2Þzz r
2 dr ¼ pD

Z a

0

fc13f̂f 0 þ c23ðf̂f þ ĝgÞ=r � rc33 þ c34ĥh=rgr2 dr;

My ¼ �pz
Z a

0

sð1Þzz r
2 dr ¼ �pDz

Z a

0

fc13�ff 0 þ c23ð�ff þ �ggÞ=r � rc33 þ c34�hh=rgr2 dr:

ð7:7Þ
Hence in order to maintain the deformation in which the axis of the cylinder remains in the ðx; zÞ plane, it is
necessary to apply a bending moment Mx about the x-axis in addition to the stress resultant X and the

bending moment My . It may be observed from the pure bending solution (6.7) and (6.8) that X ¼ �Dbs and
that My ¼ Dzbs.

Crossley et al. (2003) formulated a one-dimensional model for elastic beams with curvilinear monoclinic

symmetry, in which the constitutive equations for the shear forces and bending moments are
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bs
d2ux
dz2

¼ MyðzÞ � aY ðzÞ;

bs
d2uy
dz2

¼ �MxðzÞ þ aX ðzÞ;
ð7:8Þ
where bs is the bending stiffness of the cylinder and a is a material constant that characterizes the coupling
between the bending moment and the shear force in the direction normal to the plane of bending. By noting

that in the deformation (6.1) d2ux=dz2 ¼ C and d2uy=dz2 ¼ 0, and in the deformation (7.1) d2ux=dz2 ¼ Dz
and d2uy=dz2 ¼ 0, it follows from (6.7) and (7.7) that we can make the identifications
bs ¼ �p
Z a

0

fc13�ff 0 þ c23ð�ff þ �ggÞ=r � rc33 þ c34�hh=rgr2 dr;

abs ¼ �p
Z a

0

fc13f̂f 0 þ c23ðf̂f þ ĝgÞ=r � rc33 þ c34ĥh=rgr2 dr:
ð7:9Þ
8. Bending under uniform load

Finally, we examine the case in which C ¼ 0; D ¼ 0; with E 6¼ 0 and W0 6¼ 0, so that the axis of the

cylinder is bent into a quartic curve in the ðx; zÞ plane. The displacement becomes
ur ¼ f1ðrÞ
�

þ 1

2
z2f5ðrÞ þ

1

24
Ez4

�
cos hþ zf4ðrÞ sin h;

uh ¼ g1ðrÞ
�

þ 1

2
z2g5ðrÞ �

1

24
Ez4

�
sin hþ zg4ðrÞ cos h;

uz ¼ h1ðrÞ
�

þ 1

2
z2h5ðrÞ

�
sin hþ zh4ðrÞ

�
� 1

6
Erz3

�
cos h:

ð8:1Þ
The corresponding strain is
e10 ¼ ½f 0
1; ðf1 þ g1Þ=r; h4; g4 þ h1=r; 0; 0�T;

e20 ¼ ½0; 0; 0; 0; f4 þ h01; �ðf1 þ g1Þ=r þ g01�
T
;

e11 ¼ ½0; 0; 0; 0; f5 þ h04; ðf4 � g4Þ=r þ g04�
T
;

e21 ¼ ½f 0
4; ðf4 � g4Þ=r; h5; g5 � h4=r; 0; 0�T;

e12 ¼ ½f 0
5; ðf5 þ g5Þ=r; �Er; h5=r; 0; 0�T;

e22 ¼ ½0; 0; 0; 0; h05; �ðf5 þ g5Þ=r þ g05�
T

ð8:2Þ
and therefore the stress field is of the form
r ¼ t1

�
þ zs1 þ

1

2
z2p1

�
cos hþ t2

�
þ zs2 þ

1

2
z2p2

�
sin h;
where
t1 ¼ tð1Þrr ; tð1Þhh ; tð1Þzz ; tð1Þhz ; 0; 0
h iT

; t2 ¼ 0; 0; 0; 0; tð2Þrz ; tð2Þrh

h iT
;

s1 ¼ 0; 0; 0; 0; sð1Þrz ; sð1Þrh

h iT
; s2 ¼ sð2Þrr ; sð2Þhh ; sð2Þzz ; sð2Þhz ; 0; 0

h iT
;

p1 ¼ pð1Þrr ; pð1Þhh ; pð1Þzz ; pð1Þhz ; 0; 0
h iT

; p2 ¼ 0; 0; 0; 0; pð2Þrz ; pð2Þrh

h iT
:

ð8:3Þ
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The non-trivial equilibrium equations are (4.1), (4.4), (4.6), (4.8), (4.9), (4.11) and (4.13)–(4.15) which

determine f1; g1; h1; f4; g4; h4; f5; g5; h5 in terms of E and W0: By inspection it can be seen that (4.13)–(4.15)

are identical in form to (6.4), and (4.8), (4.9) and (4.11) are identical in form to (7.5), if

ðf1; g1; h1; f2; g2; h2;DÞ are replaced by ðf4; g4; h4; f5; g5; h5;EÞ: Hence, if the cylinder surface is traction-free,
there follow immediately
ðf5ðrÞ; g5ðrÞ; h5ðrÞÞ ¼ Eð�ff ðrÞ; �ggðrÞ; �hhðrÞÞ;
ðf4ðrÞ; g4ðrÞ; h4ðrÞÞ ¼ Eðf̂f ðrÞ; ĝgðrÞ; ĥhðrÞÞ:

ð8:4Þ
Hence e11, e12, e21 and e22 are determined, and therefore s1, s2, p1 and p2 are known, In particular, we have
pð1Þzz ¼ Efc13�ff 0 þ c23ð�ff þ �ggÞ=r � rc33 þ c34�hh=rg ð8:5Þ

and therefore, from (5.6), it follows that E and W0 are not independent, but are related as
E
Z a

0

fc13�ff 0 þ c23ð�ff þ �ggÞ=r � rc33 þ c34�hh=rgr2 dr ¼ �W0a2; ð8:6Þ
or, from (7.9)
E ¼ pa2W0=bs: ð8:7Þ

Eqs. (4.1), (4.4) and (4.6) can then be written as
dtð1Þrr

dr
þ tð2Þrh

r
þ tð1Þrr � tð1Þhh

r
¼ �W0 � sð1Þrz ;

dtð2Þrh

dr
� tð1Þhh

r
þ 2tð2Þrh

r
¼ W0 � sð2Þhz ;

dtð2Þrz

dr
� tð1Þhz

r
þ tð2Þrz

r
¼ �sð2Þzz :

ð8:8Þ
If the cylinder surface is traction-free then
tð1Þrr � tð2Þrh þ rsð1Þrz ¼ W0ða2 � r2Þ
r

þ 1

r

Z a

r
pð1Þzz r

2 dr;

sð2Þrr þ sð1Þrh þ rpð2Þrz ¼ 0; pð1Þrr � pð2Þrh ¼ 0:

ð8:9Þ
The shear stress resultants and bending moments are
X ¼ pz
Z a

0

pð1Þzz r
2 dr ¼ pEz

Z a

0

fc13�ff 0 þ c23ð�ff þ �ggÞ=r � rc33 þ c34�hh=rgr2 dr ¼ �Ezbs;

Y ¼ p
Z a

0

sð2Þzz r
2 dr ¼ pE

Z a

0

fc13f̂f 0 þ c23ðf̂f þ ĝgÞ=r � rc33 þ c34ĥh=rgr2 dr ¼ �Eabs;

Mx ¼ pz
Z a

0

sð2Þzz r
2 dr ¼ pEz

Z a

0

fc13f̂f 0 þ c23ðf̂f þ ĝgÞ=r � rc33 þ c34ĥh=rgr2 dr ¼ �Ezabs;

My ¼ �p
Z a

0

tð1Þzz r
2 dr � 1

2
pz2

Z a

0

pð1Þzz r
2 dr

¼ M0 �
1

2
pEz2

Z a

0

fc13�ff 0 þ c23ð�ff þ �ggÞ=r � rc33 þ c34�hh=rgr2 dr ¼ M0 þ
1

2
Ez2bs;

ð8:10Þ
where
M0 ¼ �p
Z a

0

tð1Þzz r
2 dr: ð8:11Þ
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Therefore in order to maintain the deformation of the cylinder axis into a quartic curve in the ðx; zÞ plane it
is necessary to apply shear forces in both x and y directions and bending moments about both x and y axes.
By taking into account (8.7) it is easily seen that the beam equilibrium equations (5.10) and (5.11) are

satisfied.
When f4, g4, h4, f5, g5, h5 are determined it then follows from (8.8) that f1, g1 and h1 are of the form
ðf1ðrÞ; g1ðrÞ; h1ðrÞÞ ¼ Eð ~ff ðrÞ; ~ggðrÞ; ~hhðrÞÞ; ð8:12Þ
where ~ff ðrÞ, ~ggðrÞ, ~hhðrÞ are the solution of (8.8) for f1ðrÞ, g1ðrÞ, h1ðrÞ in the case E ¼ 1 (and therefore
W0 ¼ bs=pa2Þ. With (8.7), the first of (8.9) becomes
tð1Þrr � tð2Þrh þ rsð1Þrz ¼ Ebsða2 � r2Þ
pa2r

þ 1

r

Z a

r
pð1Þzz r

2 dr: ð8:13Þ
Hence, from (7.9) and (8.5)
tð1Þrr � tð2Þrh þ rsð1Þrz ¼ �ða2 � r2Þ
a2r

Z a

0

pð1Þzz r
2 dr þ 1

r

Z a

r
pð1Þzz r

2 dr:

¼ r
a2

Z a

0

pð1Þzz r
2 dr � 1

r

Z r

0

pð1Þzz r
2 dr

¼ �E
rbs
pa2

�
þ 1

r

Z r

0

fc13�ff 0 þ c23ð�ff þ �ggÞ=r � rc33 þ c34�hh=rgr2 dr
�
:

ð8:14Þ
This gives independent confirmation that tð1Þrr � tð2Þrh þ rsð1Þrz is finite on the axis r ¼ 0, as was assumed in (5.6)

and, implicitly, in (8.6). Further, at any frictionless circular cylindrical surface r ¼ r0 at which rrh ¼ 0 and

rrz ¼ 0, the radial stress component rrr is independent of z and has the form rrr ¼ tð1Þrr cos h.
The solutions described in Sections 6–8, together with the corresponding solutions for bending in the

ðy; zÞ plane and rigid body displacements, may be combined in various ways to give solutions to boundary

value problems of interest. For example, Crossley et al. (2003) analyzed the cantilever problem and the

catenary problem for a helically reinforced cylinder with constant cij.
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